



Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA



## HIGH CONFIDENCE GROUNDWATER RESERVE DETERMINATION STUDY IN THE BERG CATCHMENT

#### **PROJECT STEERING COMMITTEE MEETING**

Presented by: Umvoto Date: 22 November 2022



### HIGH CONFIDENCE GROUNDWATER RESERVE DETERMINATION STUDY IN THE BERG CATCHMENT



EARTH | WATER | SCIENCE | LIFE

#### **PRESENTATION OUTLINE**

- 1. Overview of study, phases and tasks
- 2. Delineation of Groundwater Resource Units
- 3. Reference Conditions and Present Status Assessment
- 4. Status Quo Assessment Example
- 5. Upcoming Study Programme





# OVERVIEW OF STUDY, PHASES AND TASKS



### SUMMARY OF PROJECT PHASES, TASKS AND DELIVERABLES

| Phase 1  | Project i                     | Project inception                                                           |                                                                                                                                |  |  |  |
|----------|-------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Task 1   | Inception                     |                                                                             | Deliverable 1: Inception Report                                                                                                |  |  |  |
| Phase 2  | Review                        | of water resource information                                               | and data                                                                                                                       |  |  |  |
| Task 2.1 | Data collection and collation |                                                                             | Deliverable 2.1: Gap Analysis Report<br>Deliverable 2.2: Inventory of Water Resource<br>Models                                 |  |  |  |
| Phase 3  | Reserve                       | determination                                                               |                                                                                                                                |  |  |  |
| Task 3.1 | Step 1                        | Initiate Groundwater Reserve Study                                          | Recorded in Deliverable 2.1 and Deliverable 2.2                                                                                |  |  |  |
| Task 3.2 | Step 2                        | Water RU Delineation                                                        | Deliverable 3.1: Delineation of Water RUs                                                                                      |  |  |  |
| Task 3.3 | Step 3                        | B Present Status of GRU Deliverable 3.2: Ecological Reference<br>Conditions |                                                                                                                                |  |  |  |
| Task 3.4 | Step 4                        | Determine BHN and EWR                                                       | Deliverable 3.3: BHN and EWR Requirement<br>Report                                                                             |  |  |  |
| Task 3.5 | Step 5                        | Operational Scenarios &<br>Socio-economic                                   | Deliverable 3.4: Operational Scenarios & socio-<br>economic and ecological consequences                                        |  |  |  |
| Task 3.6 | Step 6                        | Evaluate scenarios with<br>Stakeholders                                     | Deliverable 3.5: Stakeholder engagement of operation scenarios                                                                 |  |  |  |
| Task 3.7 | Step 7                        | Monitoring Programme                                                        | Deliverables 3.6: Monitoring Programme Report                                                                                  |  |  |  |
| Task 3.8 | Step 8                        | Gazette & implement<br>Reserve                                              | Deliverable 3.7: Groundwater Reserve<br>Determination Report<br>Deliverable 3.8: Database<br>Deliverable 3.9: Gazette Template |  |  |  |

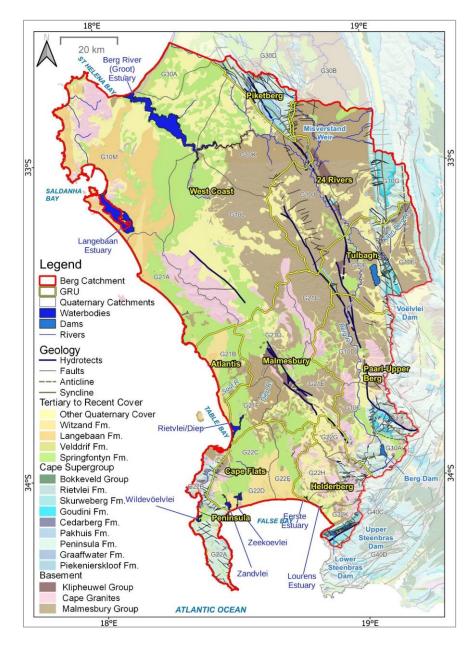




# Delineation of Groundwater Resource Units



### **GROUNDWATER RESOURCE UNIT DELINEATION**


In order to meet the Terms of Reference (TOR) for this study, the previous GRU delineation for the Berg catchment was <u>re-evaluated</u> <u>and updated</u> to ensure all groundwater resources are <u>aquifer</u> <u>specific</u>.

#### PREVIOUS DELINATION LIMITATIONS

- 1. GRUs delineated according to surface water catchments
- 2. Aquifer types were grouped
- 3. Important aquifers (i.e., TMGA) not included in study area
- 4. Surface geology assigned to point data (no "target" aquifer indicator)







### **GROUNDWATER RESOURCE UNIT DELINEATION**

GRU extents where selected based on the physical geometry (predominantly controlled by geology), recharge areas, and aquifer boundary conditions, therefore, <u>a single GRU may</u> <u>contain multiple Resource</u> <u>Units (RUs).</u>

The GRU report (DWS, 2022d) outlines the approach for delineating aquifer-specific GRUs and provides detail around the criteria considered for selecting their extents.

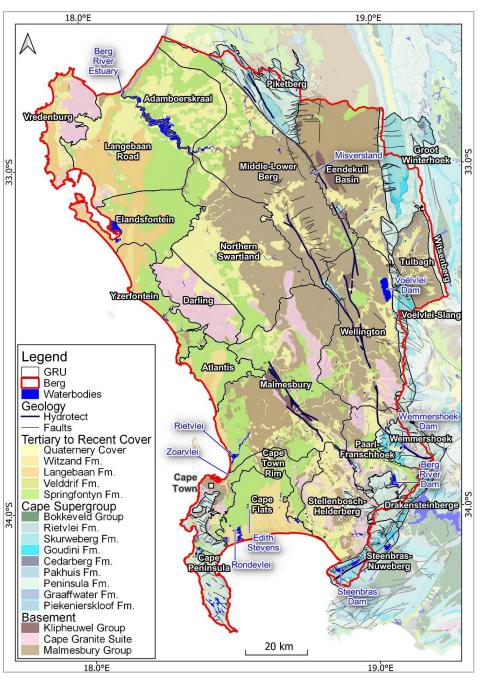
#### **PHYSICAL CRITERIA**

- a) Existing aquifer boundaries
- b) Geology (Basement, TMG, Sandveld)
- c) Structural geology (major faults, folds & hydrotects)
- d) Aquifer boundary conditions (where water enters, flows through, and exits the systems)
- e) Hydrology (major rivers, water bodies and quaternary catchments)

#### **MANAGEMENT CRITERIA**

- a) Existing river nodes, EWR sites, estuary nodes, estuary EWR sites, GRUs class
- b) Groundwater use

#### **FUNCTIONAL CRITERIA**


a) Groundwater-surface water interactions (its role in sustaining hydrological, ecological conditions e.g., groundwater-dependent wetlands)





#### **UPDATED GRUs**

| GRU name                         | Associated Surface Water Quaternary Catchment |  |  |  |  |  |
|----------------------------------|-----------------------------------------------|--|--|--|--|--|
| Primary / Intergranular Aquifers |                                               |  |  |  |  |  |
| Cape Flats                       | G22C, G22D and G22E                           |  |  |  |  |  |
| Atlantis                         | G21A, G21B and G21D                           |  |  |  |  |  |
| Yzerfontein                      | G21A                                          |  |  |  |  |  |
| Elandsfontein                    | G10M and G10L                                 |  |  |  |  |  |
| Langebaan Road                   | G10M and G10L                                 |  |  |  |  |  |
| Adamboerskraal                   | G10M, G10K and G30A                           |  |  |  |  |  |
| Fractured                        | Aquifers – Table Mountain Group (TMG)         |  |  |  |  |  |
| Cape Peninsula                   | G22A, G22B, G22C and G22D                     |  |  |  |  |  |
| Steenbras-Nuweberg               | G40B, G40A, G40D, G22J, G22K, H60A and G40C   |  |  |  |  |  |
| Drakensteinberge                 | G10A, G10C, G22F, G22J, H60A and H60B         |  |  |  |  |  |
| Wemmershoek                      | G10B, G10A, G10C, H10J, H60B and H10K         |  |  |  |  |  |
| Voëlvlei-Slanghoek               | G10E, G10J, G10D, G10F, H10E, H10F and H10J   |  |  |  |  |  |
| Witsenberg                       | G10E                                          |  |  |  |  |  |
| Groot Winterhoek                 | G10J, G10E, G10H, E10C and G10G               |  |  |  |  |  |
| Piketberg                        | G10M, G30D, G10K, G30A and G10H               |  |  |  |  |  |
| Fracture                         | d and Intergranular Aquifers - Basement       |  |  |  |  |  |
| Cape Town Rim                    | G22C, G22E, G22B and G22D                     |  |  |  |  |  |
| Stellenbosch-Helderberg          | G22G, G22H, G22F, G22J and G22K               |  |  |  |  |  |
| Paarl-Franschhoek                | G10C, G10A and G10B                           |  |  |  |  |  |
| Malmesbury                       | G201E, G21C, G21D, G21F and G21B              |  |  |  |  |  |
| Wellington                       | G10D and G10F                                 |  |  |  |  |  |
| Tulbagh                          | G10E and G10G                                 |  |  |  |  |  |
| Eendekuil Basin                  | G10H, G10J, G10F and G10K                     |  |  |  |  |  |
| Middle-Lower Berg                | G10J, G30A, G10K and G10M                     |  |  |  |  |  |
| Northern Swartland               | G10L                                          |  |  |  |  |  |
| Darling                          | G10L and G21A                                 |  |  |  |  |  |
| Vredenburg                       | G10M                                          |  |  |  |  |  |



# Reference Conditions and Present Status Assessment



### **REFERENCE CONDITIONS AND PRESENT STATUS**

The Ecological Reference Conditions Report is <u>Deliverable 3.2</u> of Phase 3 of this study and is <u>Step 3 of eight-step groundwater Reserve determination</u> <u>procedure</u>. See summary of project phases, tasks and associated deliverables (Inception Report - DWS, 2022).

#### OBJECTIVES

- 1. Provide an overview of previous status quo for groundwater in the Berg catchment.
- 2. Outline the approach and criteria considered for the revised status quo assessment.
- 3. Describe the present state of groundwater based on updated aquiferspecific GRUs delineated as part of Step 2.



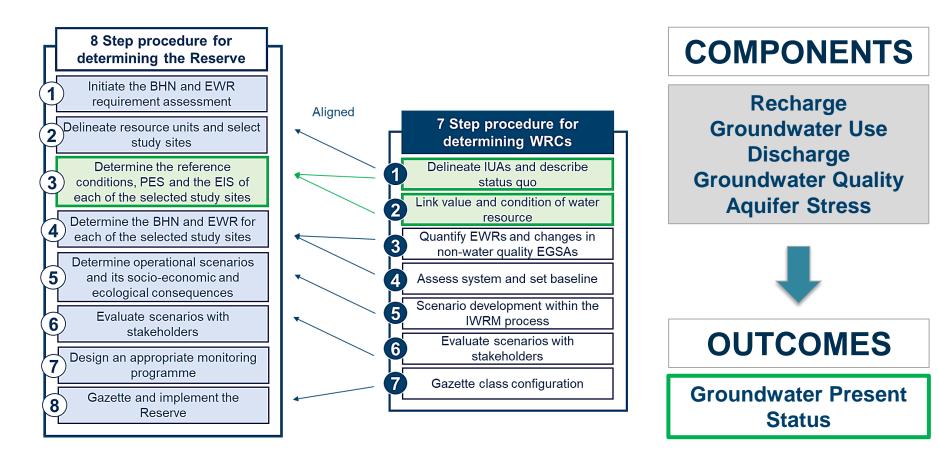


### PREVIOUS STATUS QUO INFORMATION

Gazette No.42451:121 (DWS, 2019: 121) and DWS (2016) i.e., "Determination of Water Resource Classes and Resource Quality Objectives in the Berg catchment" provides a status quo assessment of all significant water resources, for both surface water and groundwater, per IUA. The outcomes will therefore be used as the foundational input for this study.

#### SURFACE WATER

- Present-day socio-economic status
- Present-day community wellbeing ۲
- Value of water use
- Value of ecosystem use ۲
- Network of significant water resources
- **Biophysical nodes**
- Allocation nodes •
- Water Resource Class
- RQOs


#### GROUNDWATER

- 10 GRUs delineated
- Groundwater use (trend analysis)
- Groundwater quality (trend analysis)
- Groundwater supplied settlements ۲
- Groundwater Resource Class
- RQOs





### **UPDATED APPROACH**

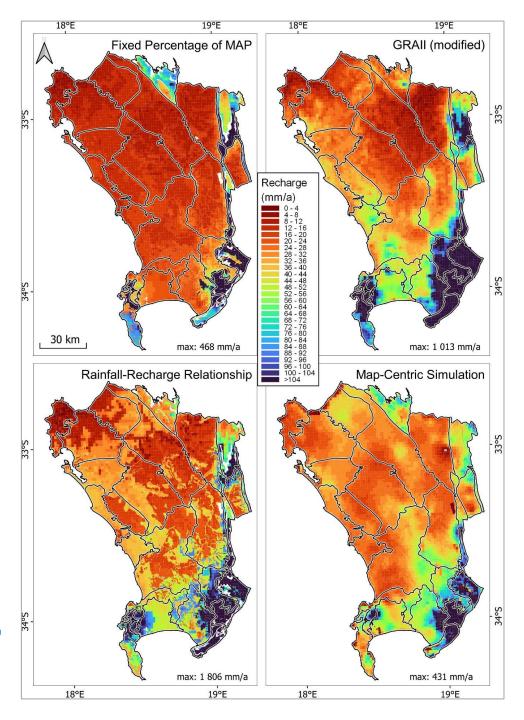


#### WATER IS LIFE - SANITATION IS DIGNITY



water & sanitation Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA




### RECHARGE

Recharge estimations were selected from various methods to provide a summary per GRU.

#### **CONSIDERATIONS**

- Level of confidence and associated limitations of the methodology
- 2. Amount, spread and availability of data across the GRU
- 3. Applicability of published datasets.

No second order recharge was necessary due to the validity of available literature data.





### RECHARGE

#### Rainfall Comparison

Is the WR2012 rainfall dataset still relevant?

A rainfall comparison was undertaken with more recent available data in the Berg catchment.

30-year Climate Norm MAP is only available for two stations (CTIA and Atlantis). Other MAP is calculated for the available data range at other stations.

#### OUTCOME

WR2012 is still relevant (given the extreme weather events, i.e., the Western Cape drought)

WATER IS LIFE - SANITATION IS DIGNITY



water & sanitation Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

### 1<sup>st</sup> Order Recharge

Four recharge estimation methods were selected:

- 1. Fixed Percentage of MAP
- 2. GRAII Spatial Distribution (Modified)
- 3. The Empirical Rainfall-Recharge Relationship
- 4. Map-Centric Simulation

### Available Literature

Second-order recharge estimation results from available literature are used.

Main 2<sup>nd</sup> order recharge estimation methods used:

- 1. Chloride Mass Balance
- 2. Cumulative Rainfall Departure
- 3. Saturated Volume Fluctuation
- 4. Isotopes

#### OUTCOME

Local recharge estimations per AU per GRU



OUTCOME Regional recharge estimations per AU per GRU

### RECHARGE

| GRU                                  | Area (km²)  | Rainfall Recharge<br>Volume (M m³/a) | Average Recharge Rate<br>(mm/a) | Total Recharge<br>Volume (M m³/a) |  |  |  |  |  |
|--------------------------------------|-------------|--------------------------------------|---------------------------------|-----------------------------------|--|--|--|--|--|
| Primary / Intergranular Aquifers     |             |                                      |                                 |                                   |  |  |  |  |  |
| Cape Flats                           | 421.94      | 41.25                                | 97.76                           | 55.85                             |  |  |  |  |  |
| Atlantis                             | 255.68      | 22.74                                | 88.94                           | 27.85                             |  |  |  |  |  |
| Yzerfontien                          | 320.33      | 9.20                                 | 28.72                           | 9.20                              |  |  |  |  |  |
| Elandsfontien <sup>6</sup>           | 532.57      | 15.47                                | 29.05                           | 15.47                             |  |  |  |  |  |
| Langebaan Road <sup>6</sup>          | 903.71      | 23.28                                | 25.76                           | 23.28                             |  |  |  |  |  |
| Adamboerskraal <sup>6</sup>          | 612.30      | 21.61                                | 35.29                           | 21.61                             |  |  |  |  |  |
|                                      | Fracture    | d Table Mountain Group A             | quifers                         |                                   |  |  |  |  |  |
| Cape Peninsula <sup>6</sup>          | 292.53      | 10.99                                | 37.57                           | 10.99                             |  |  |  |  |  |
| Steenbras-Nuweberg                   | 150.24      | 58.76                                | 391.11                          | 58.76                             |  |  |  |  |  |
| Drakensteinberge <sup>6</sup>        | 164.95      | 27.60                                | 167.32                          | 27.60                             |  |  |  |  |  |
| Wemmershoek <sup>6</sup>             | 229.13      | 26.83                                | 117.10                          | 26.83                             |  |  |  |  |  |
| Voëlvlei-Slanghoek <sup>6</sup>      | 184.26      | 14.10                                | 76.52                           | 14.10                             |  |  |  |  |  |
| Witsenberg <sup>6</sup>              | 39.95       | 2.78                                 | 69.59                           | 2.78                              |  |  |  |  |  |
| Grootwinterhoek <sup>6</sup>         | 379.26      | 22.50                                | 59.33                           | 22.50                             |  |  |  |  |  |
| Piketberg <sup>6</sup>               | 298.29      | 20.33                                | 68.16                           | 20.33                             |  |  |  |  |  |
|                                      | Fractured a | and Intergranular Basemen            | t Aquifers                      |                                   |  |  |  |  |  |
| Cape Town Rim <sup>6</sup>           | 814.62      | 18.60                                | 22.83                           | 18.60                             |  |  |  |  |  |
| Stellenbosch-Helderberg <sup>6</sup> | 570.58      | 41.52                                | 72.77                           | 41.52                             |  |  |  |  |  |
| Paarl-Franschoek <sup>6</sup>        | 368.50      | 26.61                                | 72.21                           | 26.61                             |  |  |  |  |  |
| Malmesbury <sup>6</sup>              | 1600.36     | 52.65                                | 32.90                           | 52.65                             |  |  |  |  |  |
| Wellington <sup>6</sup>              | 1068.81     | 39.49                                | 36.95                           | 39.49                             |  |  |  |  |  |
| Tulbagh <sup>6</sup>                 | 291.38      | 10.87                                | 37.31                           | 10.87                             |  |  |  |  |  |
| Eendekuil Basin <sup>6</sup>         | 936.94      | 21.88                                | 23.35                           | 21.88                             |  |  |  |  |  |
| Middle-Lower Berg <sup>6</sup>       | 1485.40     | 42.49                                | 28.61                           | 42.49                             |  |  |  |  |  |
| Northern Swartland <sup>6</sup>      | 1257.65     | 31.85                                | 25.33                           | 31.85                             |  |  |  |  |  |
| Darling <sup>6</sup>                 | 408.82      | 9.95                                 | 24.34                           | 9.95                              |  |  |  |  |  |
| Vreedenberg <sup>6</sup>             | 376.18      | 7.43                                 | 19.75                           | 7.43                              |  |  |  |  |  |
| Total                                | 13964.38    | 620.78                               | n/a                             | 640.49                            |  |  |  |  |  |





### **GROUNDWATER USE**

### DATA SOURCES

A variety of data sources were collated to assess the current groundwater use in the study area.

#### DATA SOURCES

- 1) WARMS
- 2) NGA
- 3) All Towns Reconciliation Strategies for the Southern Planning Region
- 4) Water Reconciliation Strategy for the WCWSS
- 5) GRAII (urban & domestic)

#### OUTCOME

All sources used. GRAII not available to recalculate the results

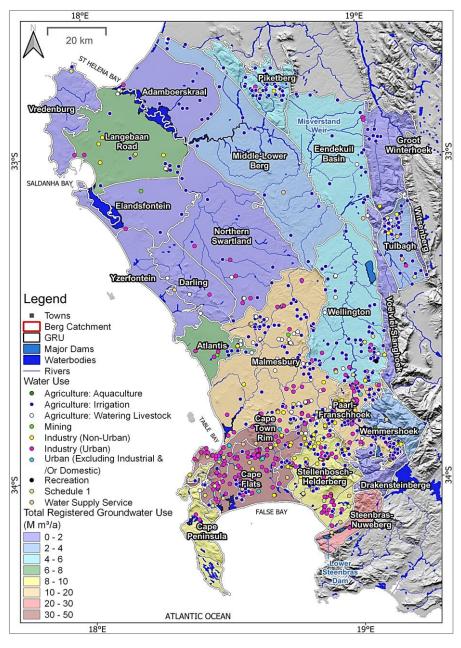
### ASSIGNING RESOURCE UNITS

The WARMS database is lacking as far as assigning registered volumes to an aquifer unit.

- 1. Liaison with various project specialists.
- 2. Linking WARMS to NGA and assigning registered volumes pro rata to the number of boreholes in different aquifers.

#### OUTCOME

WARMS was used as the main dataset. Summary of water use per sector, per AU, per GRU.


Existing WULs were also considered.





#### **GROUNDWATER USE**

| GRU                              | No. of Registered<br>Users | Total Volume (M<br>m³/a) |  |  |  |  |  |
|----------------------------------|----------------------------|--------------------------|--|--|--|--|--|
| Primary / Intergranular Aquifers |                            |                          |  |  |  |  |  |
| Cape Flats                       | 95                         | 26.6                     |  |  |  |  |  |
| Atlantis                         | 24                         | 6.76                     |  |  |  |  |  |
| Yzerfontein                      | 1                          | 0.26                     |  |  |  |  |  |
| Elandsfontein                    | 4                          | 1.09                     |  |  |  |  |  |
| Langebaan Road                   | 33                         | 8.59                     |  |  |  |  |  |
| Adamboerskraal                   | 12                         | 2.13                     |  |  |  |  |  |
| Fractured <sup>-</sup>           | Table Mountain Grou        | ip Aquifers              |  |  |  |  |  |
| Cape Peninsula                   | 8                          | 0.07                     |  |  |  |  |  |
| Steenbras-<br>Nuweberg           | 1                          | 9.13                     |  |  |  |  |  |
| Drakensteinberge                 | 2                          | 0.05                     |  |  |  |  |  |
| Wemmershoek                      | 15                         | 0.81                     |  |  |  |  |  |
| Voëlvlei-Slanghoek               | 3                          | 0.13                     |  |  |  |  |  |
| Witsenberg                       | 3                          | 0.08                     |  |  |  |  |  |
| Groot Winterhoek                 | 11                         | 1.39                     |  |  |  |  |  |
| Piketberg                        | 52                         | 5.58                     |  |  |  |  |  |
|                                  | d and Intergranular E      | Basement                 |  |  |  |  |  |
| Cape Town Rim                    | 161                        | 6.21                     |  |  |  |  |  |
| Stellenbosch-<br>Helderberg      | 163                        | 8.81                     |  |  |  |  |  |
| Paarl-Franschhoek                | 268                        | 9.82                     |  |  |  |  |  |
| Malmesbury                       | 245                        | 14.75                    |  |  |  |  |  |
| Wellington                       | 117                        | 4.48                     |  |  |  |  |  |
| Tulbagh                          | 81                         | 3.78                     |  |  |  |  |  |
| Eendekuil Basin                  | 33                         | 4.85                     |  |  |  |  |  |
| Middle-Lower Berg                | 32                         | 2.23                     |  |  |  |  |  |
| Northern Swartland               | 19                         | 1.79                     |  |  |  |  |  |
| Darling                          | 9                          | 0.76                     |  |  |  |  |  |
| Vredenberg                       | 66                         | 1.16                     |  |  |  |  |  |
| Total                            | 1406                       | 121.05                   |  |  |  |  |  |



### DISCHARGE

### DIRECT DISCHARGE

The baseflow data from the GRDM was deemed suitable for a "groundwater contribution to baseflow"

Disadvantage: "baseflow" datasets in GRDM were quantified per quaternary catchment.

#### OUTCOME

'Groundwater contribution to baseflow' per aquifer (based on equivalent recharge after Berg WAAS) was <u>spatially disaggregated</u> and totalled to provide a <u>groundwater</u> <u>contribution to baseflow estimate per GRU</u> <u>and Aquifer Unit</u>.

Discharge will be further investigated in Step 4 (i.e., Determine BHN and EWR)

### LATERAL DISCHARGE / RECHARGE

Groundwater can also discharge from one aquifer unit into another adjacent aquifer through lateral or vertical subsurface flow.

- 1. Geological interpretations and anecdotal evidence that support this being a relevant factor for several GRUs.
- 2. Potential hydraulic connection between the Peninsula and Nardouw aquifers (zones of direct geological contact that potentially lead to lateral flows)
- 3. Major fault structures (so-called hydrotects) that connect different aquifer units and potentially recharge aquifers in other GRUs

#### OUTCOME

Quantification of lateral discharge will be addressed in Step 4 (i.e., Determine BHN and EWR)



WATER IS LIFE - SANITATION IS DIGNITY



ater and Sanitation

#### DISCHARGE

| GRU                              | GW Contribution to Baseflow (M m³/a) |  |  |  |  |  |
|----------------------------------|--------------------------------------|--|--|--|--|--|
| Primary / Intergranular Aquifers |                                      |  |  |  |  |  |
| Cape Flats                       | 2.596                                |  |  |  |  |  |
| Atlantis                         | 0.1802                               |  |  |  |  |  |
| Yzerfontein                      | 0.185                                |  |  |  |  |  |
| Elandsfontein                    | 0.000                                |  |  |  |  |  |
| Langebaan Road                   | 0.000                                |  |  |  |  |  |
| Adamboerskraal                   | 0.000                                |  |  |  |  |  |
| Fractured Table Mou              | ntain Group Aquifers                 |  |  |  |  |  |
| Cape Peninsula                   | 4.283                                |  |  |  |  |  |
| Steenbras-Nuweberg               | 25.428                               |  |  |  |  |  |
| Drakensteinberge                 | 8.692                                |  |  |  |  |  |
| Wemmershoek                      | 18.516                               |  |  |  |  |  |
| Voëlvlei-Slanghoek               | 9.692                                |  |  |  |  |  |
| Witsenberg                       | 2.226                                |  |  |  |  |  |
| Groot Winterhoek                 | 11.067                               |  |  |  |  |  |
| Piketberg                        | 0.100                                |  |  |  |  |  |
|                                  | ular Basement Aquifers               |  |  |  |  |  |
| Cape Town Rim                    | 5.874                                |  |  |  |  |  |
| Stellenbosch-Helderberg          | 7.652                                |  |  |  |  |  |
| Paarl-Franschhoek                | 8.257                                |  |  |  |  |  |
| Malmesbury                       | 11.798                               |  |  |  |  |  |
| Wellington                       | 7.906                                |  |  |  |  |  |
| Tulbagh                          | 6.490                                |  |  |  |  |  |
| Eendekuil Basin                  | 4.898                                |  |  |  |  |  |
| Middle-Lower Berg                | 3.359                                |  |  |  |  |  |
| Northern Swartland               | 0.019                                |  |  |  |  |  |
| Darling                          | 0.084                                |  |  |  |  |  |
| Vredenberg                       | 0.000                                |  |  |  |  |  |
| Total                            | 139.36                               |  |  |  |  |  |





### WATER QUALITY

DATA SOUTCES

#### Monitoring data sources:

- 1. WMS
- 2. CoCT
- NWP (CFA, Atlantis, TMGA)
- Historical data (Steenbras-Nuweberg and Wemmershoek exploration)

#### OUTCOME

The WMS data was used as the primary dataset, with CoCT data used to supplement in GRUs where no WMS monitoring points were available.

### BASELINE WATER QUALITY

Baseline concentrations were established using the 95<sup>th</sup> percentile of a representative borehole.

#### **CONSIDERATIONS**

- 1. Distance from PCAs
- 2. Length of data record
- 3. Spatial centrality within GRU.

#### OUTCOME

Only 14 parameters were selected (per aquifer type) for detailed analysis. Piper diagrams show distribution of water types

### GAZETTE & RQO COMPARISON

Only 12 out of the 25 GRUs fall within a drainage region with established groundwater quality related RQOs.

It must be noted that RQOs have only been established for nitrate (NO<sub>3</sub>). However, WMS data only includes combined NO<sub>3</sub> and NO<sub>2</sub>, and this has been used as a proxy.

#### OUTCOME

Number of exceedances of Resource Quality of Objectives (RQOs) per drainage region was calculated.





### WATER QUALITY

Water quality categories have been determined for each GRU based on the percentage exceedance of baseline threshold value per parameter and per GRU. <u>Adjusted water quality categories</u> have also been established taking into consideration that <u>natural variation</u> in water quality may lead to <u>elevated parameter concentrations</u> in some GRUs

#### WATER QUALITY CATEGORIES

| Water Quality<br>(Present Status)Percentage<br>exceedanceDescription |               | Description                                                                                            | Guide                                                                                                                                     |
|----------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| А                                                                    | <16.7 %       | Unmodified, pristine conditions                                                                        | Natural groundwater quality conditions<br>prevail                                                                                         |
| В                                                                    | 16.7 – 33.4 % | Localised, low levels of contamination, but no negative impacts apparent                               | Largly natural groundwater quality<br>conditions prevail                                                                                  |
| С                                                                    | 33.4 – 50.1 % | Moderate levels of localised contamination,<br>but little or no negative impacts apparent              | Some localised contamination detected;<br>may impact the purpose for which<br>groundwater is used                                         |
| D                                                                    | 50.1 – 66.8 % | Moderate levels of widespread<br>contamination, which limit the use of<br>potential use of the aquifer | Groundwater contamination is quite<br>widespread but levels are relitavly low; may<br>impact the purpose for which groundwater<br>is used |
| E                                                                    | 66.8 – 83.5 % | High levels of local contamination which render parts of the aquifer unusable                          | High levels of contamination detected in<br>places; use of groundwater from impacted<br>area to be restricted or prohibited               |
| F                                                                    | >83.5 %       | High levels of widespread contamination which render the aquifer unusable                              | Very high levels of contamination<br>widespread throughout the aquifer.<br>Groundwater use to be restricted or<br>prohibited              |





### WATER QUALITY

| GRU Water types         |                                                                                       | Parameter Specific<br>Water Quality<br>Categories | GRU Water Quality<br>Category | Adjusted Water<br>Quality Category |
|-------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|------------------------------------|
|                         |                                                                                       |                                                   |                               |                                    |
| Adamboerskraal          | Na-Cl                                                                                 | B, E                                              | C                             | В                                  |
| Atlantis                | Na-Cl, Ca-Mg,Cl, Ca-HCO <sub>3</sub> ,<br>Ca-Na-HCO <sub>3</sub> , Ca-SO <sub>4</sub> | A, B, C                                           | В                             | С                                  |
| Cape Flats              | Na-Cl, Ca-Mg-Cl, Ca-HCO <sub>3</sub> ,<br>Ca-SO <sub>4</sub>                          | A, C, D                                           | А                             | D                                  |
| Elandsfontein           | Na-Cl, Ca-Mg-Cl                                                                       | A, B                                              | А                             | В                                  |
| Langebaan Road          | Na-Cl, Ca-Mg-Cl                                                                       | A, B, C                                           | В                             | В                                  |
| Yzerfontein             | Na-Cl, Ca-Mg-Cl                                                                       | A, C, D                                           | В                             | А                                  |
|                         | Fractured Tab                                                                         | le Mountain Group Aquife                          | 'S                            |                                    |
| Cape Peninsula          | Na-Cl, Ca-Mg-Cl, Ca-HCO $_3$                                                          | A, B, D, E, F                                     | D                             | В                                  |
| Drakensteinberge        | No data available                                                                     | No data available                                 | -                             | -                                  |
| Groot Winterhoek        | No data available                                                                     | No data available                                 | -                             | -                                  |
| Steenbras-Nuweberg      | Na-Cl, Ca-Mg-Cl, Ca-HCO <sub>3</sub> ,<br>Ca-Na-HCO <sub>3</sub>                      | A, B, C                                           | В                             | В                                  |
| Piketberg               | No data available                                                                     | No data available                                 | -                             | -                                  |
| Wemmershoek             | Na-Cl, Ca-HCO <sub>3</sub> , Ca-Na-HCO <sub>3</sub>                                   | A, C A                                            |                               | A                                  |
| Witsenberg              | No data available                                                                     | No data available                                 | -                             | -                                  |
|                         | Fractured an                                                                          | d Intergranular Basement                          |                               |                                    |
| Cape Town Rim           | Na-Cl, Ca-Mg-Cl                                                                       | A, B, D, E, F                                     | С                             | С                                  |
| Darling                 | Na-Cl                                                                                 | B, C, D, E                                        | D                             | С                                  |
| Eendekuil Basin         | Na-Cl, Ca-Mg-Cl, Ca-SO <sub>4</sub>                                                   | A, C, D, E                                        | С                             | С                                  |
| Malmesbury              | Na-Cl, Ca-Mg-Cl, Ca-SO <sub>4</sub>                                                   | A, B, C, D                                        | А                             | В                                  |
| Middle-Lower Berg       | Na-Cl                                                                                 | A, D, E                                           | С                             | С                                  |
| Northern Swartland      | Na-Cl, Ca-Mg-Cl                                                                       | B, C, D                                           | С                             | С                                  |
| Paarl-Franschhoek       | Na-Cl                                                                                 | No data available*                                | -                             | -                                  |
| Stellenbosch-Helderberg | Na-Cl, Ca-Mg-Cl                                                                       | B, C, D, E, F                                     | D                             | С                                  |
| Tulbagh                 | Na-Cl                                                                                 | No data available*                                | -                             | -                                  |
| Vredenberg              | No data available                                                                     | No data available                                 | -                             | -                                  |
| Wellington              | Na-Cl                                                                                 | В                                                 | В                             | В                                  |





### **AQUIFER STRESS**

In the context of this study, '<u>ecological reference conditions</u>' refer to the ambient or natural state of the groundwater system while the '<u>present status</u>' relates to the current status of the groundwater system. A <u>significant difference</u> between the ecological reference conditions and the present status <u>indicates a degrading state</u> of the groundwater water resource.

#### SUSTAINABLE USE

It is assumed that the 'limit' of sustainability is marked by what would be considered 'acceptable' verses 'unacceptable' groundwater use in terms of Reserve.

This, however, is an <u>outcome</u> of this study and therefore can only be properly <u>assessed</u> <u>once Steps 5 -7 of the</u> <u>groundwater Reserve</u> <u>determination procedure</u> is complete.

### LEVEL OF STRESS

A groundwater Stress Index (SI) has been developed (after WRC, 2007), which considers groundwater water availability verses <u>water use</u>. The Stress Index is defined as follows

SI = GW Use / Recharge

After calculating the SI, the "Level of Stress" guidance table is used to set the **groundwater** <u>PS</u> category per GRU.

### GROUNDWATER QUALITY

WRC (2007) provides a guidance table that is used to provide a <u>PS category based</u> <u>on groundwater quality.</u>

This has been adapted to include categories based on the percentage exceedance of baseline threshold values for each parameter and per GRU. As well as taking into account natural variation in water quality and spatial masking of localised contamination.





#### **AQUIFER STRESS**

After calculating the Stress Index, the "Level of Stress" guidance table is used to set the groundwater present status category per GRU.

| Present Status Category | Description                      | Stress Index (GW use /<br>Recharge) |  |
|-------------------------|----------------------------------|-------------------------------------|--|
| А                       | Lipstropped or slightly stropped | <0.05                               |  |
| В                       | Unstressed or slightly stressed  | 0.05 - 0.20                         |  |
| С                       | Madarathyatragad                 | 0.20 - 0.40                         |  |
| D                       | Moderatly stressed               | 0.40 - 0.65                         |  |
| E                       | Highly stressed                  | 0.65 – 0.95                         |  |
| F                       | Critically stressed              | >0.95                               |  |









### **PRESENT STATUS**

| GRU                         | Total Recharge<br>Volume<br>(M m³/a) | Groundwater Use<br>(M m³/a) | Stress Index      | Groundwater<br>Availability Present<br>Status Category | Groundwater<br>Quality Present<br>Status Category |
|-----------------------------|--------------------------------------|-----------------------------|-------------------|--------------------------------------------------------|---------------------------------------------------|
|                             |                                      | Primary / Intergran         | ular Aquifers     |                                                        |                                                   |
| Cape Flats                  | 55.85                                | 26.60                       | 0.48              | D                                                      | D                                                 |
| Atlantis                    | 27.85                                | 6.76                        | 0.24              | С                                                      | С                                                 |
| Yzerfontien                 | 9.20                                 | 0.26                        | 0.03              | А                                                      | А                                                 |
| Elandsfontien               | 15.47                                | 1.09                        | 0.07              | В                                                      | В                                                 |
| Langebaan Road              | 23.28                                | 8.59                        | 0.37              | С                                                      | В                                                 |
| Adamboerskraal              | 21.61                                | 2.13                        | 0.10              | В                                                      | В                                                 |
|                             |                                      | Fractured Table Mounta      | in Group Aquifers |                                                        |                                                   |
| Cape Peninsula              | 10.99                                | 0.07                        | 0.01              | В                                                      | В                                                 |
| Steenbras-Nuweberg          | 58.76                                | 9.13                        | 0.16              | В                                                      | В                                                 |
| Drakensteinberge            | 27.60                                | 0.05                        | 0.00              | А                                                      | -                                                 |
| Wemmershoek                 | 26.83                                | 0.81                        | 0.03              | А                                                      | А                                                 |
| Voëlvlei-Slanghoek          | 14.10                                | 0.13                        | 0.01              | А                                                      | -                                                 |
| Witsenberg                  | 2.78                                 | 0.08                        | 0.03              | А                                                      | -                                                 |
| Grootwinterhoek             | 22.50                                | 1.39                        | 0.06              | В                                                      | -                                                 |
| Piketberg                   | 20.33                                | 5.58                        | 0.27              | С                                                      | -                                                 |
|                             |                                      | Fractured and Intergra      | nular Basement    |                                                        |                                                   |
| Cape Town Rim               | 18.60                                | 6.21                        | 0.33              | С                                                      | С                                                 |
| Stellenbosch-<br>Helderberg | 41.52                                | 8.81                        | 0.21              | С                                                      | С                                                 |
| Paarl-Franschhoek           | 26.61                                | 9.82                        | 0.37              | С                                                      | -                                                 |
| Malmesbury                  | 52.65                                | 14.75                       | 0.28              | С                                                      | В                                                 |
| Wellington                  | 39.49                                | 4.48                        | 0.11              | В                                                      | В                                                 |
| Tulbagh                     | 10.87                                | 3.78                        | 0.35              | С                                                      | -                                                 |
| Eendekuil Basin             | 21.88                                | 4.85                        | 0.22              | С                                                      | С                                                 |
| Middle-Lower Berg           | 42.49                                | 2.23                        | 0.05              | В                                                      | С                                                 |
| Northern Swartland          | 31.85                                | 1.79                        | 0.06              | В                                                      | С                                                 |
| Darling                     | 9.95                                 | 0.76                        | 0.08              | В                                                      | С                                                 |
| Vredenberg                  | 7.43                                 | 1.16                        | 0.16              | В                                                      | -                                                 |





# **Status Quo Assessment Example**



### **PRESENT STATUS – Steenbras-Nuweberg GRU**

|                                | GRU Name: Steenbras-Nuweberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| GRU                            | Main Towns: Grabouw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                | Total Area (km²): 195.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| GRU<br>Boundary<br>Description | The CoCT (2021) aquifer model boundary is used for the extent of the Steenbras-Nuwel the La Motte Fault in the northern recharge area (DWAF,2008a; CoCT, 2004), and the Ko boundary) on its eastern margin. The northern extent of the GRU is bound by the extent outcrop) and the False Bay coastline to the west.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gelberg and Stettyns anticlines including portions of the G40A surface water catchment                                                                                                                                   |  |  |  |  |  |  |  |
| Quaternary<br>Catchments       | G40C, G40A, G40D, G22J, G22K, H60A and G40B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Resource                       | Fractured Table Mour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ntain Group Aquifer                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Unit                           | Peninsula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nardouw                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                | The Table Mountain Group Super aquifer is composed of the larger Peninsula Aquifer (apparent thickness approximately 600 - 700 m in this area) and the lesser Nardouw Aquifer (with its component sub-aquifers). The Peninsula Aquifer and the Skurweberg Sub-aquifer are the main deep aquifer targets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The TMG syncline exposes the Goudini, Skuwerberg and Rietvlei formations of the Nardouw Sub-group within the valley of the syncline. The aquifers consist of the Skuwerberg and Rietvlei formations. (~700 – 800m thick) |  |  |  |  |  |  |  |
| Description                    | Steenbras-<br>Steenbras-<br>Strand<br>A successful<br>Steenbras-<br>Basement<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Strand<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras-<br>Steenbras- |                                                                                                                                                                                                                          |  |  |  |  |  |  |  |

WATER IS LIFE - SANITATION IS DIGNITY



Water and Sanitation REPUBLIC OF SOUTH AFRICA



### **PRESENT STATUS – Steenbras-Nuweberg GRU**

|                                        | GRU Name: Steenb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GRU Name: Steenbras-Nuweberg                                                       |                                                                                                                                                              |                                              |                                                                                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GRU                                    | Main Towns: Grabouw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                                                                                                                                              |                                              |                                                                                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |  |
|                                        | Total Area (km²): 195.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |                                                                                                                                                              |                                              |                                                                                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |  |
|                                        | The confining unit that overlies the Peninsula Aquifer and separates it from the overlying Nardouw Aquifer, consists of a conformable package of three aquitard units (Goudini, Cedarberg, and Pakhuis) named the Winterhoek Mega-aquitard. Hydrogeologically, the entire Pakhuis – Goudini sequence is an effective aquitard, although the Goudini Formation is considered part of the Nardouw Subgroup. The TMG has been folded into a syncline, exposing the Peninsula Formation in the limbs forming steep mountainsides alongside the valley. The Peninsula, Pakhuis, Cedarberg and Goudini Formations outcrop in the topographically elevated synclinal/anticlinal limbs in the mountainous regions adjacent to the dam area |                                                                                    |                                                                                                                                                              |                                              |                                                                                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |  |
| Surface<br>Water<br>System             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    |                                                                                                                                                              |                                              |                                                                                                       | Vater Supply System (WCW)<br>o south-west, namely the Ste |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |  |
| Water<br>Resource<br>Classes &<br>RQOS | outside of the D7 IU<br>the former Berg WM<br>G40A and G22K) ha<br>Class. This GRU ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A as the GRU extended of<br>A. The portions of the GR<br>is a Water Resource Class | IUA (D7), while the rest of t<br>butside of the Berg catchme<br>U that fall within the D7 IUA<br>of II and has no Groundwat<br>it hosts 1 priority biophysic | nt area, i.e.,<br>(catchments<br>er Resource | Stellenbos<br>Helderbe<br>Estuary<br>Evii21<br>D7<br>C224<br>Bvii22<br>C40A<br>Bvii22<br>C40B<br>5 km | rg Steenbras-<br>Nuweberg                                 | Print Not Office of Characteristics of Characterist | Steenbras-<br>Nuweberg<br>GRU<br>Rivers<br>Hydrotect<br>Faults<br>Waterbodies<br>Priority Estuaries<br>Quaternary<br>catchment<br>ority Biophysical<br>des<br>oundwater<br>source<br>ass<br>II<br>III<br>III<br>III<br>III |  |
|                                        | IUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Resource Class                                                               | Quaternary Catchment                                                                                                                                         | RU                                           | Resource Name                                                                                         | Biophysical Node                                          | TEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nMAR                                                                                                                                                                                                                       |  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    |                                                                                                                                                              |                                              |                                                                                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                            |  |







### **PRESENT STATUS – GRU EXAMPLE**

|                    | GRU Name: Steenbras-Nuweberg                                                                                                                                                                                                                       |                                                                                      |                                                                                                |                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| GRU                | Main Towns: Grabouw                                                                                                                                                                                                                                |                                                                                      |                                                                                                |                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                    | Total Area (km²): 195.18                                                                                                                                                                                                                           |                                                                                      |                                                                                                |                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                    | An estimated recharge of <b>58.76<u>M m³/a</u></b> wa into the Aquifer Stress ( <b>Section 4.6.1.2</b> ) as available in literature (See <b>Section 4.2.3</b> ).                                                                                   | s determined from GRAII based on the hyd<br>sessments. The average recharge rate equ | rogeological technical assessment (CoCT, 2<br>ates to <u>391.11 mm/a</u> based on the total GR | 2022). This recharge value was carried over<br>U area. Additional recharge estimations are                                                                                                                                                                                                       |  |  |  |  |
| Recharge           | Method                                                                                                                                                                                                                                             | Area (km²)                                                                           | Recharge Volume<br>(M m³/a)                                                                    | Average Recharge Rate<br>(mm/a)                                                                                                                                                                                                                                                                  |  |  |  |  |
|                    | After (CoCT, 2022) hydrogeological technical<br>assessment for IWULA                                                                                                                                                                               | 150.24                                                                               | 58.76                                                                                          | 391.11                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Groundwater<br>Use | Water Supply services is the only registered<br>of <u>9.13 M m<sup>3</sup>/</u> a (see Section 4.3.3 for detail)<br>Aquifer and 5.48 M <u>m<sup>3</sup>/</u> a in the Nardouw Aq<br>Water Use Sector No. of I<br>Water Supply service 1<br>Total 1 | . This is split by <b>3.65 <u>M m<sup>3</sup>/</u>a</b> in the Peninsula uifer.      | Stellenbosch-<br>Helderberg<br>Somerset West                                                   | eenbras-<br>uweberg<br>Uweberg<br>Uweberg<br>Uweberg<br>Uweberg<br>Uweberg<br>Uweborg<br>Uweborg<br>Uwestock<br>Of Wins<br>Agriculture:<br>Agriculture:<br>Agriculture:<br>Agriculture:<br>Agriculture:<br>Agriculture:<br>Mining<br>Industry (Non-Urban)<br>Urban (Excluding<br>Industrial &/Or |  |  |  |  |





#### **PRESENT STATUS – GRU EXAMPLE**

|                  | GRU Name: Steenbras-Nuweberg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| GRU              | Main Towns: Grabouw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Total Area (km²): 195.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Groundwater's contribution to baseflow was re-calculated using the aquifer specific baseflow estimates from DWAF (2008b) based on equivalent recharge. The total discharge for this GRU is <u>7.93 M m<sup>3</sup>/a</u> (see Section 4.4.1 for details).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |
| Discharge        | RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sum of Baseflow per component (M m3/a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Primary / Intergranular Aquifers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Nardouw Aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Peninsula Aquifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Fractured and Intergranular Other (TMG & Bokkeveld)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Fractured and Intergranular Basement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
|                  | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
| Water<br>Quality | The main water types in the Peninsula Aquifer are Na-CI, Ca-Na-HCO <sub>3</sub> and Ca-HCO <sub>3</sub> type. The Na-CI waters are due to the deposition of marine aerosols and recharge by coastal rainfall. Ca-HCO <sub>3</sub> type waters are due to the dissolution of carbonate minerals, while Ca-Na-HCO <sub>3</sub> type water are due to ion exchange between Ca <sup>+</sup> ions from Ca-HCO <sub>3</sub> and Na <sup>+</sup> ions in the lithology.<br>Exceedance of baseline concentrations was observed for all parameters except dissolved arsenic, chromium, lead and mercury, with 50% of samples exceeding baselines for sulphate and EC. The adjusted water quality category is B, indicating that largely natural water quality conditions prevail, although natural, acidic pH, elevated iron and manganese are water quality concerns. | The main water types in the Nardouw Aquifer are Na-Cl, with 3 samples showing Ca-Na-HCO <sub>3</sub> and Ca-Mg-Cl type. The Na-Cl waters are due to the deposition of marine aerosols and recharge by coastal rainfall.<br>EC and pH are lower than in the Peninsula Aquifer, with the more acidic pH being the result of dissolution of humic compounds from overlying plants, dissolution of CO <sub>2</sub> (which forms carbonic acid) in recharge water and limited presence of basic ions (compared to Peninsula Aquifer) to buffer acidic waters. Exceedance of baseline concentrations were observed for all parameters except fluoride, orthophosphate, dissolved chromium and mercury. The adjusted water quality category is B, indicating that largely natural water quality conditions prevail, although natural, acidic pH, elevated iron and manganese are water quality concerns. |  |  |  |  |  |  |  |  |  |  |  |  |





#### **PRESENT STATUS – GRU EXAMPLE**

GRU Name: Steenbras-Nuweberg GRU Main Towns: Grabouw Total Area (km<sup>2</sup>): 195.18 Peninsula Aquifer Nardouw Aquifer Key Кеу 100 100 100 100 1 - Ca-HCO3 type 1 - Ca-HCO3 type 2 - Na-Cl type 3 - Ca-Na-HCO3 type 2 - Na-Cl type 3 - Ca-Na-HCO3 type 0, 0, 0, ۵ کړ 4 - Ca-Mg-Ci type 4 - Ca-Mg-Cl type 5 5 - Ca-SO4 type 60 5 - Ca-SO4 type 6 - Na-HCO3 type 6 - Na-HCO3 type 0 100 100 0 100 0 0 100 34 80 80 20 <sup>h</sup>CO<sub>3</sub> <sup>h</sup>CO<sub>3</sub> 40 60 40 60 60 40 60 <sup>c</sup>o<sup>2</sup> 200 ちょ 10 ő õ 60 40 20 0 100 80 60 40 20 0 20 40 60 80 100 100 80 60 40 20 0 0 20 40 60 80 100 0 CI Ca Ca CL Adjusted Water Quality Category GRU Water Quality Category Adjusted Water Quality Category GRU Water Quelity Category Specific Water Quality Specific Water Quality Minimum Baseline Minimum Maximum Average Median Baseline Average Median GRU Paramete Water type: GRU Paramete Maximum Water types Subhate (mg/l) Electrical Subhate (mg/l) Electrical 14:00 2.47 38.00 14,14 13 10.0 2.00 24.20 10.60 9 D conductivity В conductivity (nS/n) (nSh 5.57 5 91 2 88 5.75 0.00 vrimonia (my 1.05 0.00 1.20 0.12 0.1 0.20 3.66 0.30 0.2 A (mg/l) (mg/l) 0.28 0.76 0.40 0.50 0.05 0.50 0.1 0.32 0.00 0.97 0.15 0.1 0.20 0.20 0.10 0.1 Dee (mg/l) Dissolved Na-Cl. Ca-Mg-Cl, Ca-HCO<sub>3</sub>, Ca-Na-HCO<sub>4</sub> 0.04 0.040 0.012 Na-CI, Ca-Mg-CI, Ca-Na-0.012 0.001 0.000 0.040 0.001 0 074 0.024 A A в в D в Teni mumimum Inscived Access 0.003 0.010 0.007 0.01 0.010 0.040 0.003 0.001 0.001 0.005 A (mgil) (mgl) Dissolved 0.007 0.007 0.020 0.015 0.02 0.020 0.001 D 020 0.010 0.007 cmium (m 7.756 0.004 12.05 4.998 2.153 A 0.024 0.024 5.266 0.363 0.024 A 0.007 0.001 0.010 0.008 0.01 0.010 0.001 0.040 0.008 0.007 А (ngt) Disarit-(ngl) Dissolved 0.627 0.005 3.162 6.625 6.387 8 0.025 0.019 0.200 0.053 0.019 A Dissolved Disartese (mg) 0.005 0.001 0.005 0.004 0.005 0.005 0.001 0.005 0.005 0.005 The GRU is considered to have a Groundwater Availability Present Status Category of 'B, indicating an unstressed or slightly stressed aquifer, and a Groundwater Quality Present Status Category of 'B' indicating localised, low levels of contamination, but no negative impacts apparent. Aquifer Recharge Volume Groundwater Use Groundwater Availability Present Groundwater Quality Present Stress Index Stress (M m3/a) (M m3/a) Status Category Status Category 58.76 9.13 0.16 В B

WATER IS LIFE - SANITATION IS DIGNITY



Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA



# **Upcoming Study Programme**



### PROGRAMME OF UPCOMING ACTIVITIES

#### November 2022

- Management:
  - 1. Project Steering Committee Meeting held on 22<sup>nd</sup> November 2022
- Tasks:
  - 1. Task 3.4: BHN and EWR Determination
- December 2022
- Tasks:
  - 1. Task 3.4: BHN and FWR Determination
- **January 2023**
- Tasks:
  - 1. Task 3.4: BHN and EWR Determination
- February 2023
- Management:
  - 1. Project Steering Committee Meeting (date TBC)
- Deliverable:
  - 1. D3.3 BHN and EWR Determination Report





| 2022                                                                           |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     | _                                                                                       | _    | 2024                          |     |     |     |     |     |     |     |     |     |     |
|--------------------------------------------------------------------------------|-----|-----|-----|------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----|-----|-----|-----------------------------------------------------------------------------------------|------|-------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Mar                                                                            | Apr | Мау | Jun | Jul  | Aug                                                     | Sep                                                  | Oct                                                              | Nov | Dec | Jan | Feb                                                                                     | Mar  | Apr                           | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb |
|                                                                                |     |     |     | Step | Step 1: Initiate the BHN and EWR requirement assessment |                                                      |                                                                  |     |     |     |                                                                                         |      |                               |     |     |     |     |     |     |     |     |     |     |
|                                                                                |     |     |     |      | X                                                       | Step 2: Groundwater resource unit delineation report |                                                                  |     |     |     |                                                                                         |      |                               |     |     |     |     |     |     |     |     |     |     |
|                                                                                |     |     |     |      |                                                         |                                                      | X Step 3: Ecological status & reference conditions per RU report |     |     |     |                                                                                         |      |                               |     |     |     |     |     |     |     |     |     |     |
|                                                                                |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     | X                                                                                       | Step | 4: Determine BHN & EWR report |     |     |     |     |     |     |     |     |     |     |
|                                                                                |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     | X Step 5: Operational scenarios & socio-<br>economic and ecological consequences report |      |                               |     |     |     |     |     |     |     |     |     |     |
| Step 6: Evaluate scenarios with stakeholder's report X                         |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     |                                                                                         |      |                               |     |     |     |     |     |     |     |     |     |     |
| Step 7: Monitoring programme report                                            |     |     |     |      |                                                         |                                                      |                                                                  |     |     | X   |                                                                                         |      |                               |     |     |     |     |     |     |     |     |     |     |
| Step 8: Gazette & implement reserve - groundwater reserve determination report |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     |                                                                                         | Х    |                               |     |     |     |     |     |     |     |     |     |     |
| Database                                                                       |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     |                                                                                         | X    |                               |     |     |     |     |     |     |     |     |     |     |
| Gazette template                                                               |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     |                                                                                         |      | X                             |     |     |     |     |     |     |     |     |     |     |
| General project management, capacity building and stakeholder engagement       |     |     |     |      |                                                         |                                                      |                                                                  |     |     |     |                                                                                         |      |                               |     |     |     |     |     |     |     |     |     |     |
|                                                                                | PSC |     |     |      | Χ                                                       |                                                      |                                                                  | Χ   |     |     | Χ                                                                                       |      |                               |     | Χ   |     |     |     | Χ   |     |     | X   |     |





# **THANK YOU**

WATER IS LIFE - SANITATION IS DIGNITY



water & sanitation Water and Sanitation **REPUBLIC OF SOUTH AFRICA** 

